If it's not what You are looking for type in the equation solver your own equation and let us solve it.
5u^2-26u+5=0
a = 5; b = -26; c = +5;
Δ = b2-4ac
Δ = -262-4·5·5
Δ = 576
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$u_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$u_{2}=\frac{-b+\sqrt{\Delta}}{2a}$$\sqrt{\Delta}=\sqrt{576}=24$$u_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(-26)-24}{2*5}=\frac{2}{10} =1/5 $$u_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(-26)+24}{2*5}=\frac{50}{10} =5 $
| 3(r-1)=2(2+r) | | 4(x-2)=8(x-3)-17 | | (x+8)-2=12 | | k2-4k-12=0 | | 2(x+2)=-3(7x+6) | | (x+5)/2+(x+2)/5=1 | | 3t+8(2t-6)=2-14t | | 0=y÷2 | | 3r=78+14 | | (-1+3i)^2=0 | | 65-10x=15x | | 19x=22 | | -5x+20=-30 | | 16+1x=0 | | 5x(x-1)=-7x^2+2 | | 6(y+6)+7y=23 | | 2m+1=-5 | | 1.25(x-8)+12=-120 | | 4(5x-10)=10(2x-5) | | 7w-w2=0 | | 4x+12=-5x-15 | | X^2/25+y^2/36=1 | | 12.5-6x=-2x-3.5 | | 9m-m2=0 | | 7x+53=165 | | 4x+12=-5-15 | | -1=2(w-2)-5w | | 3x+3(2x)=18 | | 5/4v=3/5 | | 7n+24=11n | | 3x6=18÷5 | | 2.21/(x)(.75)=5.3 |